
Continuous Science Foundation

Case Studies

HOW AGILE AND LEAN PRINCIPLES RESHAPED HOW
WE BUILD, COLLABORATE, AND DELIVER

CONTINUOUS SOFTWARE DEVELOPMENT

KEY INSIGHTS
Change is not a disruption to be managed. It’s a constant to be designed for. Continuous
development didn’t just speed things up — it fundamentally reframed the goals of the system:
from documentation to delivery, from control to trust, from silos to collaboration.

The shift wasn’t just technical. It was cultural and organizational. It treated change as constant,
valued learning, and viewed speed and quality not as trade-offs, but as outcomes of a
healthy system.

BACKGROUND
In the early days of software, teams followed a rigid, step-by-step “waterfall” model.
Projects took years, were delivered late, often missing the mark entirely. Development
was siloed. Decision-making was top-down. Changes to the plan were seen as a threat.

In the 1990s and 2000s, software teams began looking for inspiration—notably to
Toyota’s lean manufacturing system. Toyota had revolutionized production with just-
in-time delivery, root-cause analysis, small batch sizes, and respect for workers as
problem-solvers. Software teams asked: what if we built software this way?

The result was a new mindset—and with it, a revolution in practices: Agile
development, DevOps, continuous integration, and continuous delivery.

The Transformation
Software teams didn’t just copy lean manufacturing. They adapted it to fit the radically
different world of code. They built continuous systems that worked iteratively, in small,
meaningful units, giving teams the ability to release changes at any time, with high
confidence—and to keep improving.

Some of the foundational practices of continuous software development include:
Working in small batches: Avoiding delays and getting fast feedback.
Continuous integration: Merging code fast to reduce defects & increase velocity.
Testing is part of development, not an afterthought—enabling safe, rapid changes.
Continuous delivery pipelines so that value can flow directly from idea to end user.
Information is visible across teams: requirements, blockers, progress, & metrics.
Empowered teams: cross functional, talking to users, identifying problems,
proposing solutions, and improving the system.

C A S E S T U D Y - C O N T I N U O U S S O F T W A R E D E V E L O P M E N T

INSPIRATION FOR SCIENCE: REDESIGNING
HOW WE SHARE KNOWLEDGE

THE BIG IDEA
Just as Agile transformed software from a fragile, delay-prone endeavor to a fast-moving,
quality-centered practice, continuous practices in science could redefine the pace & impact
of research—starting with a change in mindset, reinforced by changes in systems.

Transformation isn’t about doing the same things faster—it is about redesigning the
system to be more human, more scalable, and more effective. More science-y?

What are the practices of a more responsive, rigorous, and inclusive scientific system?
What mindsets can we reframe with this lens?
How can we look at our systems differently?
What is continuous science?

Just as Agile reframed how software teams work, continuous and integrated practices in
science invites us to rethink how knowledge is produced, validated, and shared. Science today
often mimics waterfall: long timelines, disconnected teams in charge of deployment
(publishing) vs development (the science!), infrequent releases (publications), and huge rework
at the end.

THE CHALLENGE
Today’s scientific system assumes that work must be polished before it is shared. But this model
creates bottlenecks:

Months (or years) of work go unseen until publication and even preprints.
Valuable feedback comes too late to be corrective and instructive.
Collaboration is limited to narrow, formal channels and is often adversarial.
Scientists waste time on administrative burden, slow processes, and rigid expectations.
Reproducibility suffers because the artifacts of the process — code, data, intermediate
results — are missing or fragmented.

THE PARALLEL OPPORTUNITY
Agile and continuous methods reshaped software by empowering teams to experiment,
release, and improve in short loops. What if science worked more like that? Not copying
software, but asking: what are the principles that matter most — and what new practices could
support them?

Designing for Continuity in Science Might Include:
Sharing research-in-progress to invite early feedback and foster collaboration.
Modularity: Breaking monolithic papers into smaller, structured, reusable components.
Continuous review: Peer feedback as an ongoing conversation, not a single checkpoint.
Versioning: Treating content and data like code—version-controlled, testable, & reusable.
Automating tedious tasks, so scientists can focus on science.

C A S E S T U D Y - C O N T I N U O U S S O F T W A R E D E V E L O P M E N T

continuousfoundation.org

CSF

